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Modified Baylis–Hillman adducts having 2-bromophenyl acetonitrile moiety at the primary position
underwent a Pd-catalyzed cascade reaction to provide poly-substituted naphthalene derivatives in rea-
sonable yields. The reaction involved a sequential 5-exo-carbopalladation, C(sp3)–H activation to cyclo-
propane, ring-opening and concomitant aromatization processes.
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Chemical transformations of Baylis–Hillman adducts have
received much attention during the last two decades.1–3 Various
cyclic and acyclic compounds have been prepared from Baylis–Hill-
man adducts and their derivatives.1–3 Although Pd-catalyzed
chemical transformations of Baylis–Hillman adducts started very
recently, they have provided many interesting heterocyclic
compounds.1h,2,3,4a,b

Recently we reported the synthesis of cyclopropane-fused dihy-
drobenzofuran derivatives from the modified Baylis–Hillman ad-
ducts having 2-bromophenol moiety as shown in Scheme 1.4a

The formation of cyclopropane derivative involved a C(sp3)–H
bond activation process of the palladium intermediate.4a,5 In addi-
tion, a trace amount of benzylidene compound was formed to-
gether via a d-carbon elimination process.4a During the studies
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we reasoned out that if we replace the oxygen atom to a carbon
linkage accompanying an electron-withdrawing substituent such
as a nitrile group, then the corresponding cyclopropane ring could
be opened to a dihydronaphthalene derivative, and eventually
made to form the naphthalene 4 via an aerobic oxidation process
(Scheme 1). Literature survey stated that Liron and Knochel also
observed such a ring-expansion of cyclopropane into a dihydro-
naphthalene derivative.5a In these contexts, we decided to examine
the synthesis of poly-substituted naphthalenes6,7 from the starting
materials 3.

The starting materials 3a–g were prepared by the reactions of
cinnamyl bromides 1a–d, prepared from the corresponding Bay-
lis–Hillman adducts,8 and 2-bromobenzyl derivatives 2a–d under
the influence of K2CO3 in DMF at room temperature (Scheme 2).
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3a: 84% (1a + 2a)
3b: 86% (1b + 2a)
3c: 83% (1c + 2a)
3d: 80% (1a + 2b)
3e: 49% (1d + 2a)
3f: 94% (1a + 2c)
3g: 79% (1a + 2d)

HBr (for 1a-c)
PBr3 (for 1d)

2a-d (1.4 equiv)
K2CO3 (2.0 equiv)
DMF, rt, 2-5 h

(For 3e)
Cs2CO3 (2.0 equiv)
CH3CN, rt, 6 h

For the structure of 3a-g, 
see Table 2 and Scheme 5

Scheme 2.

Table 1
Optimization reaction conditions of 3aa

Entry Conditions 4a (%)/ 5a (%)/
6a (%)b

1 TBAB (1.0 equiv), K2CO3 (2.0. equiv),
CH3CN, reflux, 24 h

39/8/0

2 TBAB (1.0 equiv), K2CO3 (2.0. equiv),
DMF, 60 �C, 2 h

c

3 TBAB (1.0 equiv), K2CO3 (2.0 equiv),
DMF, 80–90 �C, 30 min

54/7/0

4 TBAB (1.0 equiv), K2CO3 (2.0 equiv),
DMF, 110 �C, 30 min

24/9/0

5 TBAB (1.0 equiv), Cs2CO3 (2.0 equiv), DMF,
80–90 �C, 30 min

d

6 PPh3 (20 mol %), K2CO3 (2.0 equiv), DMF, 110 �C, 1 h d

7 PPh3 (20 mol %), Et3N (5.0 equiv), DMF, 110 �C, 1 h 0/0/34

a Conditions: Pd(OAc)2 (10 mol %) is common.
b Isolated yields.
c Sluggish reaction.
d Severe decomposition was observed.
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The yields of 3a–g were good (79–94%) except 3e. The yield of 3e
was low due to the formation of many intractable side products
under the same conditions. However, a reasonable yield of 3e
(49%) was obtained under the influence of Cs2CO3 in CH3CN (rt,
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6 h). With these compounds 3a–g we examined the Pd(0)-cata-
lyzed synthesis of naphthalene derivatives.

The reaction of 3a was examined under various Pd-catalyzed
conditions, and we observed the formation of three compounds
4a, 5a and 6a, in variable yields, as shown in Table 1 and in
Scheme 3.8,9 The reaction of 3a was effective at around 80–90 �C,
and the use of DMF as a solvent was better than CH3CN (entries
1–3). The reactions at higher temperature (entries 4 and 6) or
the use of Cs2CO3 (entry 5) were not fruitful. It is interesting to note
that compound 6a was isolated as the sole product when we used
Et3N (entry 7), albeit in low yield, via the d-carbon elimination and
concomitant decarboxylation process,4 as shown in Scheme 3. Fur-
ther oxidation of 6a at the benzylic position to the corresponding
indanone derivative was not observed under the influence of a
weak base Et3N (vide infra).

The formation of naphthalene 4a could be explained as in our
previous Letter4a involving the sequential oxidative addition of
Pd(0) to form (I), 5-exo-carbopalladation to form (II), C(sp3)–H acti-
vation to give cyclopropane (III),4a,5a base-mediated ring-opening
to dihydronaphthalene (IV), and an aerobic oxidation. The aerobic
oxidation of dihydronaphthalene occurred during the reaction con-
comitantly as in our previous synthesis of quinolines.3e The forma-
tion of trace amounts of indanone 5a must be the result of a
reductive Heck type reaction caused by the solvent DMF10 to pro-
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Table 2
Synthesis of poly-substituted naphthalenes 4a–fa

Entry Substrate Products (%)
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b Ar is 4-tolyl.
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duce (V), and the following base-mediated aerobic oxidation to 5a.
Similar aerobic oxidation of benzylic cyanides under basic condi-
tions has been reported.11
We chose the conditions in entry 3 (Table 1) and carried out the
synthesis of naphthalenes 4a–f, as shown in Table 2. Naphthalene
derivatives 4a–f were obtained in reasonable yields (21–54%)
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along with trace amounts of indanone derivatives 5a–d (6–9%).9 It is
interesting to note that vinyl compound 5e was isolated in 23% yield
for the ethylidene compound 3e via the usual b-H elimination pro-
cess of the palladium intermediate (entry 5). Ester derivative 3f (en-
try 6) also produced naphthalene 4f in a reasonable yield (41%);
however, we failed to isolate the corresponding indane derivative 5f.

The structure of naphthalene was confirmed unequivocally by
NOE experiments, as shown in Scheme 4, using compound 4b as
an example. Irradiation of the singlet of naphthalene 4b at
7.97 ppm showed a NOE increment of the aromatic protons of
the phenyl group (7.42–7.48 ppm). As shown in Scheme 4, naph-
thalene 7 has to be formed if the carbopalladation occurred in a
6-endo mode. From the NOE results, the possibility of 6-endo-car-
bopalladation could be ruled out.

The benzoyl derivative 3g showed the formation of many
intractable compounds under the optimized conditions (entry 3
in Table 1), and we failed to obtain the corresponding naphthalene
derivative 4g. However, the reaction under the conditions using
Et3N (entry 7 in Table 1) afforded compound 8 in 67% yield via
the d-carbon elimination process,4,9 as shown in Scheme 5.

In summary, we disclosed a new synthesis of poly-substituted
naphthalenes starting from the Baylis–Hillman adducts having 2-
bromophenyl acetonitrile moiety at the primary position via a
Pd-catalyzed cascade reaction involving a sequential 5-exo-carbo-
palladation, C(sp3)–H activation to cyclopropane, ring-opening
and aromatization processes.
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Anal. Calcd for C18H16O3: C, 77.12; H, 5.75. Found: C, 77.43; H, 5.98.
Compound 4b: 53%; white solid, mp 83–85 �C; IR (KBr) 2226, 1728, 1235 cm�1;
1H NMR (CDCl3, 300 MHz) d 1.01 (t, J = 7.2 Hz, 3H), 4.19 (q, J = 7.2 Hz, 2H), 7.42–
7.48 (m, 5H), 7.71 (t, J = 7.8 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.97 (s, 1H), 8.03 (d,
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J = 8.1 Hz, 1H), 8.31 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 13.63, 61.88,
111.88, 117.10, 125.39, 125.89, 128.39, 128.53, 128.67, 128.83, 128.92, 129.72,
131.22, 133.92, 134.97, 137.21, 138.73, 167.95; ESIMS m/z 324 (M++Na).
Compound 5b: 9%; colorless oil; IR (film) 1720, 1234, 1195 cm�1; 1H NMR (CDCl3,
300 MHz) d 1.25 (t, J = 7.2 Hz, 3H), 2.75 (d, J = 18.9 Hz, 1H), 3.19 (d, J = 13.5 Hz,
1H), 3.28 (d, J = 18.9 Hz, 1H), 3.56 (d, J = 13.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H),
6.92–6.97 (m, 2H), 7.15–7.20 (m, 3H), 7.43–7.48 (m, 1H), 7.65–7.70 (m, 2H),
7.80–7.83 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 14.04, 44.59, 44.81, 54.17, 61.81,
123.57, 125.93, 127.08, 128.31, 128.87, 129.89, 134.75, 136.21, 136.25, 155.06,
173.23, 203.62; ESIMS m/z 317 (M++Na).
Compound 5e: 23%; colorless oil; IR (film) 1732, 1721, 1248, 1236 cm�1; 1H NMR
(CDCl3, 300 MHz) d 2.82 (d, J = 18.9 Hz, 1H), 3.49 (d, J = 18.9 Hz, 1H), 3.75 (s, 3H),
4.98 (d, J = 17.1 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 6.39 (dd, J = 17.1 and 10.5 Hz,
1H), 7.46–7.51 (m, 1H), 7.64–7.72 (m, 2H), 7.75–7.79 (m, 1H); 13C NMR (CDCl3,
75 MHz) d 47.21, 53.03, 55.73, 115.45, 123.74, 126.96, 129.00, 134.87, 135.98,
139.08, 153.49, 172.85, 203.18; ESIMS m/z 239 (M++Na). Anal. Calcd for
C13H12O3: C, 72.21; H, 5.59. Found: C, 72.38; H, 5.77.
Compound 6a: 34%; yellow oil; IR (film) 2240, 1491, 1459, 1261 cm�1; 1H NMR
(CDCl3, 300 MHz) d 3.35–3.61 (m, 2H), 4.26 (dd, J = 8.7 and 6.0 Hz, 1H), 7.01 (t,
J = 2.4 Hz, 1H), 7.23–7.41 (m, 7H), 7.48–7.52 (m, 1H), 7.62–7.65 (m, 1H); 13C NMR
(CDCl3, 75 MHz) d 32.72, 36.00, 120.72, 120.77, 121.57, 125.04, 127.23, 128.53,
128.63, 129.10, 129.17, 136.89, 138.30, 138.47, 141.72; ESIMS m/z 254 (M++Na).
Anal. Calcd for C17H13N: C, 88.28; H, 5.67; N, 6.06. Found: C, 88.13; H, 5.78; N,
5.95.
Compound 8: 67%; yellow solid; mp 106–108 �C; IR (KBr) 1682, 1596, 1447,
1225 cm�1; 1H NMR (CDCl3, 300 MHz) d 3.36–3.60 (m, 2H), 5.17 (dd, J = 8.4 and
5.1 Hz, 1H), 7.02 (t, J = 2.1 Hz, 1H), 7.09–7.67 (m, 13H), 8.03–8.06 (m, 1H); 13C
NMR (CDCl3, 75 MHz) d 34.98, 50.86, 120.11, 120.59, 125.58, 126.59, 127.88,
128.34, 128.44, 128.59, 128.84, 129.04, 133.34, 136.77, 137.73, 141.35, 142.84,
142.91, 199.27; ESIMS m/z 333 (M++Na). Anal. Calcd for C23H18O: C, 89.00; H,
5.85. Found: C, 88.85; H, 5.92.

10. For the reductive Heck type quenching caused by DMF, see: (a) Zawisza, A. M.;
Muzart, J. Tetrahedron Lett. 2007, 48, 6738–6742; (b) Li, J.; Hua, R.; Liu, T. J. Org.
Chem. 2010, 75, 2966–2970; (c) Legros, J.-Y.; Primault, G.; Toffano, M.; Riviere,
M.-A.; Fiaud, J.-C. Org. Lett. 2000, 2, 433–436; (d) Brenda, M.; Knebelkamp, A.;
Greiner, A.; Heitz, W. Synlett 1991, 809–810.

11. For the similar oxidative decyanation of secondary nitriles to ketones, see: (a)
Kulp, S. S.; McGee, M. J. J. Org. Chem. 1983, 48, 4097–4098; (b) Freerksen, R. W.;
Selikson, S. J.; Wroble, R. R. J. Org. Chem. 1983, 48, 4087–4096.
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