[Tetrahedron Letters 51 \(2010\) 4267–4271](http://dx.doi.org/10.1016/j.tetlet.2010.06.046)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Regioselective synthesis of naphthalenes from modified Baylis–Hillman adducts via a Pd-catalyzed cyclization: 5-*exo*-carbopalladation, C(sp³)–H activation to cyclopropane, ring-opening, and aromatization cascade

Se Hee Kim, Hyun Seung Lee, Ko Hoon Kim, Jae Nyoung Kim *

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

article info

Article history: Received 31 May 2010 Accepted 7 June 2010 Available online 15 June 2010

ABSTRACT

Modified Baylis–Hillman adducts having 2-bromophenyl acetonitrile moiety at the primary position underwent a Pd-catalyzed cascade reaction to provide poly-substituted naphthalene derivatives in reasonable yields. The reaction involved a sequential 5-exo-carbopalladation, $C(sp^3)$ -H activation to cyclopropane, ring-opening and concomitant aromatization processes.

- 2010 Elsevier Ltd. All rights reserved.

Chemical transformations of Baylis–Hillman adducts have received much attention during the last two decades.¹⁻³ Various cyclic and acyclic compounds have been prepared from Baylis–Hillman adducts and their derivatives.¹⁻³ Although Pd-catalyzed chemical transformations of Baylis–Hillman adducts started very recently, they have provided many interesting heterocyclic compounds.1h,2,3,4a,b

Recently we reported the synthesis of cyclopropane-fused dihydrobenzofuran derivatives from the modified Baylis–Hillman adducts having 2-bromophenol moiety as shown in Scheme 1.^{4a} The formation of cyclopropane derivative involved a $C(sp^3)$ –H bond activation process of the palladium intermediate.^{4a,5} In addition, a trace amount of benzylidene compound was formed together via a δ -carbon elimination process.^{4a} During the studies we reasoned out that if we replace the oxygen atom to a carbon linkage accompanying an electron-withdrawing substituent such as a nitrile group, then the corresponding cyclopropane ring could be opened to a dihydronaphthalene derivative, and eventually made to form the naphthalene 4 via an aerobic oxidation process (Scheme 1). Literature survey stated that Liron and Knochel also observed such a ring-expansion of cyclopropane into a dihydronaphthalene derivative.^{5a} In these contexts, we decided to examine the synthesis of poly-substituted naphthalenes $6,7$ from the starting materials 3.

The starting materials 3a–g were prepared by the reactions of cinnamyl bromides 1a–d, prepared from the corresponding Baylis–Hillman adducts, 8 and 2-bromobenzyl derivatives $2a-d$ under the influence of K_2CO_3 in DMF at room temperature [\(Scheme 2\)](#page-1-0).

Scheme 1.

Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389. E-mail address: kimjn@chonnam.ac.kr (J.N. Kim).

0040-4039/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved. doi[:10.1016/j.tetlet.2010.06.046](http://dx.doi.org/10.1016/j.tetlet.2010.06.046)

Scheme 2.

Table 1 Optimization reaction conditions of 3a^a

openmoacion reacción conunions or ou		
Entry	Conditions	4a $(\%)$ 5a $(\%)$ 6a $(\%)^b$
1	TBAB (1.0 equiv), K_2CO_3 (2.0. equiv), $CH3CN$, reflux, 24 h	39/8/0
2	TBAB (1.0 equiv), K_2CO_3 (2.0. equiv), DMF, $60 °C$, 2 h	$\mathbf c$
3	TBAB (1.0 equiv), K_2CO_3 (2.0 equiv), DMF, 80-90 °C, 30 min	54/7/0
$\overline{4}$	TBAB (1.0 equiv), K_2CO_3 (2.0 equiv), DMF, 110 °C, 30 min	24/9/0
5	TBAB (1.0 equiv), Cs_2CO_3 (2.0 equiv), DMF, 80-90 °C. 30 min	d
6	PPh ₃ (20 mol %), K ₂ CO ₃ (2.0 equiv), DMF, 110 °C, 1 h	d
7	PPh ₃ (20 mol %), Et ₃ N (5.0 equiv), DMF, 110 °C, 1 h	0/0/34

^a Conditions: Pd(OAc)₂ (10 mol %) is common.
^b Isolated yields.

Sluggish reaction.

d Severe decomposition was observed.

The yields of 3a–g were good (79–94%) except 3e. The yield of 3e was low due to the formation of many intractable side products under the same conditions. However, a reasonable yield of 3e (49%) was obtained under the influence of $Cs₂CO₃$ in CH₃CN (rt, 6 h). With these compounds $3a-g$ we examined the Pd(0)-catalyzed synthesis of naphthalene derivatives.

The reaction of 3a was examined under various Pd-catalyzed conditions, and we observed the formation of three compounds 4a, 5a and 6a, in variable yields, as shown in Table 1 and in Scheme 3.^{[8,9](#page-3-0)} The reaction of **3a** was effective at around 80–90 °C, and the use of DMF as a solvent was better than $CH₃CN$ (entries 1–3). The reactions at higher temperature (entries 4 and 6) or the use of $Cs₂CO₃$ (entry 5) were not fruitful. It is interesting to note that compound 6a was isolated as the sole product when we used Et₃N (entry 7), albeit in low yield, via the δ -carbon elimination and concomitant decarboxylation process,⁴ as shown in Scheme 3. Further oxidation of 6a at the benzylic position to the corresponding indanone derivative was not observed under the influence of a weak base Et_3N (vide infra).

The formation of naphthalene 4a could be explained as in our previous Letter^{4a} involving the sequential oxidative addition of Pd(0) to form (I), 5-exo-carbopalladation to form (II), $C(sp^3)$ -H activation to give cyclopropane (III) , $4a,5a$ base-mediated ring-opening to dihydronaphthalene (IV), and an aerobic oxidation. The aerobic oxidation of dihydronaphthalene occurred during the reaction concomitantly as in our previous synthesis of quinolines.^{3e} The formation of trace amounts of indanone 5a must be the result of a reductive Heck type reaction caused by the solvent DMF^{10} DMF^{10} DMF^{10} to pro-

Scheme 3.

Table 2

^a Conditions: substrate 3 (1.0 equiv), Pd(OAc)₂ (10 mol %), TBAB (1.0 equiv), K₂CO₃ (2.0 equiv), DMF, 80–90 °C, 30 min. ^b Ar is 4-tolyl.

duce (V), and the following base-mediated aerobic oxidation to 5a. Similar aerobic oxidation of benzylic cyanides under basic condi-tions has been reported.^{[11](#page-4-0)}

We chose the conditions in entry 3 ([Table 1](#page-1-0)) and carried out the synthesis of naphthalenes 4a–f, as shown in Table 2. Naphthalene derivatives 4a–f were obtained in reasonable yields (21–54%) along with trace amounts of indanone derivatives $5a-d(6-9%)$. It is interesting to note that vinyl compound 5e was isolated in 23% yield for the ethylidene compound $3e$ via the usual β -H elimination process of the palladium intermediate (entry 5). Ester derivative 3f (entry 6) also produced naphthalene 4f in a reasonable yield (41%); however, we failed to isolate the corresponding indane derivative 5f.

The structure of naphthalene was confirmed unequivocally by NOE experiments, as shown in [Scheme 4](#page-2-0), using compound 4b as an example. Irradiation of the singlet of naphthalene 4b at 7.97 ppm showed a NOE increment of the aromatic protons of the phenyl group (7.42–7.48 ppm). As shown in [Scheme 4,](#page-2-0) naphthalene 7 has to be formed if the carbopalladation occurred in a 6-endo mode. From the NOE results, the possibility of 6-endo-carbopalladation could be ruled out.

The benzoyl derivative 3g showed the formation of many intractable compounds under the optimized conditions (entry 3 in [Table 1\)](#page-1-0), and we failed to obtain the corresponding naphthalene derivative 4g. However, the reaction under the conditions using Et₃N (entry 7 in [Table 1\)](#page-1-0) afforded compound 8 in 67% yield via the δ -carbon elimination process,^{4,9} as shown in [Scheme 5.](#page-2-0)

In summary, we disclosed a new synthesis of poly-substituted naphthalenes starting from the Baylis–Hillman adducts having 2 bromophenyl acetonitrile moiety at the primary position via a Pd-catalyzed cascade reaction involving a sequential 5-exo-carbopalladation, $C(sp^3)$ -H activation to cyclopropane, ring-opening and aromatization processes.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009- 0070633). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- 1. For the general review on Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511–4574; (c) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627–645; (d) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481–1490; (e) Langer, P. Angew. Chem., Int. Ed. 2000, 39, 3049–3052; (f) Radha Krishna, P.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897–2912; (g) Declerck, V.; Martinez, J.; Lamaty, F. *Chem. Rev. 2009, 109, 1–*48; (h)
Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. *Tetrahedron* **2009**, 65, 8769–8780.
- 2. For the recent Pd-catalyzed reactions of modified Baylis–Hillman adducts, see: (a) Vasudevan, A.; Tseng, P.-S.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591– 8593; (b) Coelho, F.; Veronese, D.; Pavam, C. H.; de Paula, V. I.; Buffon, R. Tetrahedron 2006, 62, 4563–4572; (c) Kohn, L. K.; Pavam, C. H.; Veronese, D.; Coelho, F.; De Carvalho, J. E.; Almeida, W. P. Eur. J. Med. Chem. 2006, 41, 738– 744; (d) Liu, H.; Yu, J.; Wang, L.; Tong, X. Tetrahedron Lett. 2008, 49, 6924–6928; (e) Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty, F. Tetrahedron 2007, 63, 3340–3349; (f) Jellerichs, B. G.; Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758–7759. further references were compiled in Ref. 1h.
- 3. For our contributions on Pd-catalyzed reactions of modified Baylis–Hillman adducts, see: (a) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, S. H.; Kim, J. N. Chem. Eur. J. 2010, 16, 2375–2380; (b) Kim, J. M.; Kim, S. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 1734–1737; (c) Kim, K. H.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 5322–5325; (d) Lee, H. S.; Kim, S. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1773–1776; (e) Gowrisankar, S.; Lee, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1670-1673; (f) Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Tetrahedron Lett. 2007, 48, 8619–8622; (g) Kim, J. M.; Kim, K. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3248– 3251; (h) Lee, H. S.; Kim, S. H.; Gowrisankar, S.; Kim, J. N. Tetrahedron 2008, 64, 7183–7190; (i) Gowrisankar, S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6241–6244.
- 4. For the similar examples on δ -carbon elimination, see: (a) Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3858–3861; (b) Kim, H. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3154– 3157; (c) Kim, H. S.; Gowrisankar, S.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6569–6572. and further references were cited therein.
- 5. For the similar examples on $C(sp^3)$ –H bond activation, see: (a) Liron, F.; Knochel, P. Tetrahedron Lett. 2007, 48, 4943–4946; (b) Ren, H.; Li, Z.; Knochel, P. Chem. Asian J. 2007, 2, 416–433; (c) Ren, H.; Knochel, P. Angew. Chem., Int. Ed.

, 45, 3462–3465; (d) Dyker, G. Angew. Chem., Int. Ed. 1994, 33, 103–105; (e) Dyker, G. J. Org. Chem. 1993, 58, 6426–6428; (f) Dyker, G. Angew. Chem., Int. Ed. , 31, 1023–1025; (g) Hitce, J.; Retailleau, P.; Baudoin, O. Chem. Eur. J. 2007, , 792–799; (h) Baudoin, O.; Herrbach, A.; Gueritte, F. Angew. Chem., Int. Ed. , 42, 5736–5740.

- 6. For some leading references to naphthalene synthesis, see: (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650–12651; (b) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921–10925; (c) Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.; Gonzalez, J. M. Org. Lett. 2003, 5, 4121–4123; (d) Barluenga, J.; Vazquez-Villa, H.; Merino, I.; Ballesteros, A.; Gonzalez, J. M. Chem. Eur. J. 2006, 12, 5790-5805; (e) Patil, N. T.; Konala, A.; Singh, V.; Reddy, V. V. N. Eur. J. Org. Chem. 2009, 5178–5184; (f) Shi, M.; Lu, J.-M. J. Org. Chem. 2006, 71, 1920–1923; (g) Jiang, X.; Kong, W.; Chen, J.; Ma, S. Org. Biomol. Chem. 2008, 6, 3606–3610; (h) Dudnik, A. S.; Schwier, T.; Gevorgyan, V. Tetrahedron 2009, 65, 1859–1870; (i) Balamurugan, R.; Gudla, V. Org. Lett. 2009, 11, 3116–3119.
- 7. For our recent synthesis of naphthalene derivatives, see: (a) Kim, S. H.; Kim, Y. M.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2010, 51, 1592-1595; (b) Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett. 2006, 47, 977–980; (c) Gowrisankar, S.; Kim, K. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 2537-2539; (d) Im, Y. J.; Lee, K. Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2002, 43, 4675–4678; (e) Gowrisankar, S.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 3105–3108.
- 8. For the synthesis of cinnamyl bromide derivatives in a stereoselective manner from Baylis–Hillman adducts, see: (a) Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 726-728. and further references cited therein; (b) Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc. 2007, 2, 2665-2676; (c) Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60, 8357-8361; (d) Fernandes, L.; Bortoluzzi, A. J.; Sa, M. M. Tetrahedron 2004, 60, 9983-9989; (e) Sa, M. M.; Ramos, M. D.; Fernandes, L. Tetrahedron 2006, 62, 11652-11656; (f) Deng, J.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 2015–2017; (g) Lee, K. Y.; Lee, Y. J.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 143–146; (h) Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1489–1492.
- Typical procedure for the preparation of starting material 3a: A mixture of 1a $(255 \text{ mg}, 1.0 \text{ mmol})$, 2a $(275 \text{ mg}, 1.4 \text{ mmol})$, and K_2CO_3 (277 mg, 2.0 mmol) in DMF (3 mL) was stirred at room temperature for 2 h. The usual aqueous workup and column chromatographic purification process (hexanes/diethyl ether, 15:1) afforded compound 3a as a colorless oil, 312 mg (84%). Other compounds were prepared similarly and the selected spectroscopic data of 3a, 3b, and 3g are as follows.

Compound 3a: 84%; colorless oil; IR (film) 2242, 1713, 1436, 1263 cm⁻¹; ¹H NMR $(CDCI₃, 300 MHz)$ δ 3.07–3.20 (m, 2H), 3.87 (s, 3H), 4.77 (t, J = 8.1 Hz, 1H), 7.10– 7.53 (m, 9H), 7.93 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 31.72, 35.91, 52.30, 119.77, 123.13, 127.54, 128.20, 128.55, 128.63 (2C), 129.30, 129.78, 133.24, 134.71, 134.85, 144.15, 167.59; ESIMS m/z 392 (M⁺+Na), 394 (M⁺+2+Na). Anal. Calcd for $C_{19}H_{16}BrNO_2$: C, 61.64; H, 4.36; N, 3.78. Found: C, 61.95; H, 4.45; N, 3.56.

Compound 3b: 86%; colorless oil; IR(film) 2242, 1705, 1472, 1260 cm⁻¹; ¹H NMR (CDCl3, 300 MHz) δ 1.39 (t, J = 7.2 Hz, 3H), 3.07–3.20 (m, 2H), 4.32 (q, J = 7.2 Hz,
2H), 4.78 (t, J = 8.1 Hz, 1H), 7.10–7.52 (m, 9H), 7.93 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) d 14.31, 31.69, 35.93, 61.33, 119.81, 123.15, 127.84, 128.21, 128.54, 128.56, 128.63, 129.30, 129.77, 133.23, 134.81, 134.91, 143.89, 167.12; ESIMS m/ z 406 (M⁺+Na), 408 (M⁺+2+Na). Anal. Calcd for C₂₀H₁₈BrNO₂: C, 62.51; H, 4.72; N 3.65. Found: C, 62.76; H, 4.69; N, 3.51.

Compound **3g**: 79%; white solid, mp 62–64 °C, IR (KBr) 1710, 1683, 1445, 1436, 1436, 1525, 1526, 1526, IR (KBr) 17
1252, 1208 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.19–3.34 (m, 2H), 3.80 (s, 3H), 5.43 (dd, $J = 9.9$ and 4.5 Hz, $1H$), $6.83 - 6.96$ (m, $5H$), $7.19 - 7.22$ (m, $3H$), $7.33 - 7.38$ $(m, 2H)$, 7.44–7.49 $(m, 2H)$, 7.69 $(s, 1H)$, 7.92–7.95 $(m, 2H)$; ¹³C NMR (CDCl₃, 75 MHz) d 30.54, 50.21, 52.09, 125.05, 127.67, 127.83, 128.17, 128.48, 128.50, 128.55, 128.68, 129.57, 129.65, 132.87, 133.03, 135.40, 136.03, 137.67, 141.99, 168.49, 199.10; ESIMS m/z 471 (M⁺+Na), 473 (M⁺+2+Na). Anal. Calcd for $C_{25}H_{21}BrO_3$: C, 66.82; H, 4.71. Found: C, 66.97; H, 4.93.

Typical procedure for the preparation of **4a**: A stirred mixture of **3a** (185 mg, 0.5 mmol), Pd(OAc)₂ (12 mg, 10 mol %), TBAB (162 mg, 0.5 mmol), and K₂CO₃ (135 mg, 1.0 mmol) in DMF (1 mL) was heated to 80–90 °C und atmosphere for 30 min. After the usual aqueous workup and column chromatographic purification process (hexanes/EtOAc, 20:1), compounds 4a (78 mg, 54%) and 5a (10 mg, 7%) were obtained. Other compounds were prepared similarly and the selected spectroscopic data of 4a, 5a, 4b, 5b, 5e, 6a, and 8 are as follows.

Compound **4a**: 54%; white solid, mp 136–138 °C; IR (KBr) 2226, 1732, 1236 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.73 (s, 3H), 7.40–7.78 (m, 5H), 7.68– 7.78 (m, 2H), 7.98 (s, 1H), 7.98–8.01 (m, 1H), 8.30–8.33 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 52.60, 112.08, 117.07, 125.43, 125.91, 128.37, 128.47, 128.79, 128.89, 128.97, 129.77, 131.21, 133.93, 134.70, 137.19, 138.65, 168.56; ESIMS m/z 310 $(M^+$ +Na). Anal. Calcd for C₁₉H₁₃NO₂: C, 79.43; H, 4.56; N, 4.88. Found: C, 79.71; H $4.66 \cdot N$ 4.54

Compound 5a: 7%; colorless oil; IR(film) 1720, 1241, 1207 cm⁻¹; ¹H NMR(CDCl₃, 300 MHz) δ 2.76 (d, J = 18.9 Hz, 1H), 3.19 (d, J = 13.8 Hz, 1H), 3.26 (d, J = 18.9 Hz, 1H), 3.57 (d, J = 13.8 Hz, 1H), 3.74 (s, 3H), 6.91-6.94 (m, 2H), 7.17-7.21 (m, 2H), 7.42–7.48 (m, 2H), 7.65–7.70 (m, 2H), 7.80–7.82 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 44.61, 44.81, 52.79, 54.18, 123.60, 125.96, 127.12, 128.34, 128.93, 129.85, 134.81, 136.10, 136.23, 154.86, 173.76, 203.47; ESIMS m/z 303 (M⁺+Na). Anal. Calcd for C₁₈H₁₆O₃: C, 77.12; H, 5.75. Found: C, 77.43; H, 5.98.

Compound 4b: 53%; white solid, mp 83–85 °C; IR (KBr) 2226, 1728, 1235 cm⁻¹;
¹H NMB (CDCL 300 MHz) δ 1.01 (t I – 7.2 Hz 3H) 4.19 (g I – 7.2 Hz 2H) 7.42– ¹H NMR (CDCl₃, 300 MHz) δ 1.01 (t, J = 7.2 Hz, 3H), 4.19 (q, J = 7.2 Hz, 2H), 7.42– 7.48 (m, 5H), 7.71 (t, J = 7.8 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.97 (s, 1H), 8.03 (d, $J = 8.1$ Hz, 1H), 8.31 (d, $J = 8.4$ Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.63, 61.88, 111.88, 117.10, 125.39, 125.89, 128.39, 128.53, 128.67, 128.83, 128.92, 129.72, 131.22, 133.92, 134.97, 137.21, 138.73, 167.95; ESIMS m/z 324 (M*+Na).
Compound **5b**: 9%; colorless oil; IR (film) 1720, 1234, 1195 cm⁻¹; ¹H NMR (CDCl₃,

300 MHz) δ 1.25 (t, J = 7.2 Hz, 3H), 2.75 (d, J = 18.9 Hz, 1H), 3.19 (d, J = 13.5 Hz, 1H), 3.28 (d, J = 18.9 Hz, 1H), 3.56 (d, J = 13.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 6.92–6.97 (m, 2H), 7.15–7.20 (m, 3H), 7.43–7.48 (m, 1H), 7.65–7.70 (m, 2H),
7.80–7.83 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.04, 44.59, 44.81, 54.17, 61.81, 123.57, 125.93, 127.08, 128.31, 128.87, 129.89, 134.75, 136.21, 136.25, 155.06, 173.23, 203.62; ESIMS m/z 317 (M⁺+Na).

Compound **5e**: 23%; colorless oil; IR (film) 1732, 1721, 1248, 1236 cm⁻¹; ¹H NMR $(CDCI₃, 300 MHz)$ δ 2.82 (d, J = 18.9 Hz, 1H), 3.49 (d, J = 18.9 Hz, 1H), 3.75 (s, 3H), 4.98 (d, J = 17.1 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 6.39 (dd, J = 17.1 and 10.5 Hz,
1H), 7.46-7.51 (m, 1H), 7.64-7.72 (m, 2H), 7.75-7.79 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) d 47.21, 53.03, 55.73, 115.45, 123.74, 126.96, 129.00, 134.87, 135.98, 139.08, 153.49, 172.85, 203.18; ESIMS m/z 239 (M⁺+Na). Anal. Calcd for C₁₃H₁₂O₃: C, 72.21; H, 5.59. Found: C, 72.38; H, 5.77.

Compound **6a**: 34%; yellow oil; IR (film) 2240, 1491, 1459, 1261 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.35–3.61 (m, 2H), 4.26 (dd, J = 8.7 and 6.0 Hz, 1H), 7.01 (t,
J = 2.4 Hz, 1H), 7.23–7.41 (m, 7H), 7.48–7.52 (m, 1H), 7.62–7.65 (m, 1H); ¹³C NMR (CDCl3, 75 MHz) d 32.72, 36.00, 120.72, 120.77, 121.57, 125.04, 127.23, 128.53, 128.63, 129.10, 129.17, 136.89, 138.30, 138.47, 141.72; ESIMS m/z 254 (M⁺+Na). Anal. Calcd for $C_{17}H_{13}N$: C, 88.28; H, 5.67; N, 6.06. Found: C, 88.13; H, 5.78; N, 5.95.

Compound 8: 67%; yellow solid; mp 106-108 °C; IR (KBr) 1682, 1596, 1447, 1225 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.36-3.60 (m, 2H), 5.17 (dd, J = 8.4 and 5.1 Hz, 1H), 7.02 (t, J = 2.1 Hz, 1H), 7.09-7.67 (m, 13H), 8.03-8.06 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 34.98, 50.86, 120.11, 120.59, 125.58, 126.59, 127.88, 128.34, 128.44, 128.59, 128.84, 129.04, 133.34, 136.77, 137.73, 141.35, 142.84, 142.91, 199.27; ESIMS m/z 333 (M⁺+Na). Anal. Calcd for C₂₃H₁₈O: C, 89.00; H 5.85. Found: C, 88.85; H, 5.92.

- 10. For the reductive Heck type quenching caused by DMF, see: (a) Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738–6742; (b) Li, J.; Hua, R.; Liu, T. J. Org. Chem. 2010, 75, 2966–2970; (c) Legros, J.-Y.; Primault, G.; Toffano, M.; Riviere, M.-A.; Fiaud, J.-C. Org. Lett. 2000, 2, 433–436; (d) Brenda, M.; Knebelkamp, A.; Greiner, A.; Heitz, W. Synlett 1991, 809–810.
- 11. For the similar oxidative decyanation of secondary nitriles to ketones, see: (a) Kulp, S. S.; McGee, M. J. J. Org. Chem. 1983, 48, 4097–4098; (b) Freerksen, R. W.; Selikson, S. J.; Wroble, R. R. J. Org. Chem. 1983, 48, 4087–4096.